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Bilinear diffusion quantum Monte Carlo methods
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The standard method of quantum Monte Carlo for the solution of the Schro¨dinger equation in configuration
space can be described quite generally as devising a random walk that generates—at least asymptotically—
populations of random walkers whose probability density is proportional to the wave function of the system
being studied. While, in principle, the energy eigenvalue of the Hamiltonian can be calculated with high
accuracy, estimators of operators that do not commute the Hamiltonian cannot. Bilinear quantum Monte Carlo
~BQMC! is an alternative in which the square of the wave function is sampled in a somewhat indirect way.
More specifically, one uses a pair of walkers at positionsx andy and introduces stochastic dynamics to sample
f i(x)t(x,y)f j (y), wheref i(x) andf j (y) are eigenfunctions of~possibly different! Hamiltonians, andt(x,y)
is a kernel that correlates positionsx andy. Using different Hamiltonians permits the accurate computation of
small energy differences. We review the conceptual basis of BQMC, discuss qualitatively and analytically the
problem of the fluctuations in the branching, and present partial solutions to that problem. Finally we exhibit
numerical results for some model systems including harmonic oscillators and the hydrogen and helium atoms.
Further research will be necessary to make this a practical and generally applicable scheme.

DOI: 10.1103/PhysRevE.67.026708 PACS number~s!: 02.70.Ss, 02.70.Tt, 02.50.Ng
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I. INTRODUCTION

The term quantum Monte Carlo~QMC! is used to encom-
pass different approaches for solving the Scho¨dinger equa-
tion of a system using stochastic techniques@1#. Most of
these techniques represent the state in question~usually the
ground state! as a set of positions in the space, which a
distributed in proportion to the wave function for that sta
This representation combined with a trial wave function c
be used to calculate exactly for bosonic systems, both
energy of the state and expectations of operators that c
mute with the Hamiltonian. When we sum the values of
trial wave function over the positions of the random wa
we say that we are using a ‘‘mixed estimator.’’

QMC techniques have been applied with great succes
atomic and molecular physics@1,2#, nuclear physics@3#, and
condensed matter physics@4#. However, there are still ope
problems such as the sign problem for fermionic systems
the unbiased evaluation of the expectation value of opera
that do not commute with the Hamiltonian. The sign proble
is caused by the fact that the states of a fermionic system
not have a defined sign, so they cannot be used as the p
ability distribution function need by QMC techniques. W
can eliminate this problem by multiplying by a trial functio
but in this case we will not obtain the exact energy since
are forcing our representation to have the same zeros a
trial function. Different techniques have been applied
overcome this problem@5# and in the recent years the fe
mion Monte Carlo technique is providing very promisin
results@6#.

*Permanent address: Departamento de Fı´sica Moderna, Facultad
de Ciencias, Granada E-18071, Spain.
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In this paper, we present work in progress to find unbia
expectation values of operators that do not commute with
Hamiltonian. The fundamental difficulty is that most existin
methods in QMC use a delta-function basis, and theref
the solution that arises from the random walk cannot
squared directly: it becomes necessary to ‘‘project’’ by w
of a mixed estimator, which is simply the sum of a tri
function over the positions generated in the random wa
BQMC avoids this dilemma by sampling the square of t
wave function, albeit in an indirect way.

The mixed estimator is an approximation that can be
proved by using the extrapolation method@7#. If fT is an
approximation to the exact ground statef of the system
under study, one can approximate a correct estimator

Ap5
^fuAuf&

^fuf&
~1!

as the linear combination of the mixed and variational e
mators, respectively,

Am5
^fTuAuf&

^fTuf&
, Av5

^fTuAufT&

^fTufT&
, ~2!

which has error quadratic in the difference between the
wave functions (D5f2fT). That is

Ap52Am2Av1O~D2!. ~3!

This method has been widely used@8# because of its simplic-
ity, but it provides an estimate of the expectation val
whose bias is hard to assess. This problem of the bias
been eliminated by using two related methods: the fut
walking method and the time correlation method. The fi
one is based on the estimation of the ratiof/fT using the
©2003 The American Physical Society08-1
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asymptotic offspring coming from the branching term@9#. In
this line, different tagging algorithms have been construc
to properly account for the asymptotic number of desc
dants@10–12#. The tagging process can be eliminated by
evaluation of a weight proportional to the expected futu
progeny of every walker after each step@13#. This method is
asymptotically exact and has been successfully applied
certain problems to obtain very accurate results@10–14#.
However all of these methods, which rely on forward wa
ing, are technically delicate and lead to a signal-to-noise
tio that decays to zero at large imaginary time, when
methods are least biased. The time correlation method
permits calculating the ratiof/fT and has been recentl
applied in the context of path integral Monte Carlo@15#.

Another challenging problem for QMC is the calculatio
of the energy difference between two similar systems. T
can be expressed in terms of matrix elements of the w
functions. That is, iff i for i 51,2 denote the ground states
the systems with HamiltoniansHi , then

E22E15
^f1uH22H1uf2&

^f1uf2&
, ~4!

assuming that the number of degrees of freedom of b
systems is the same. If an independent calculation of b
energies is used for calculating the difference, the statist
variance of the mean can be comparable with the ene
difference leading to no valuable information. For some s
tems, it has been possible to correlate the two random w
such that there is a important cancellation in the varian
However, this is possible only for few systems@16,17#.

A solution to both problems of calculating energy diffe
ences and expectations of operators is provided by bilin
quantum Monte Carlo~BQMC!. The basic idea is to corre
late the configurations representing the two related w
functions. That is, BQMC aims to sample

C~XW !5f1~xW !t~xW ,yW !f2~yW !. ~5!

We shall hereafter use capital letters to denote pairs of v
tors. The functiont(xW ,yW ) is chosen to correlate the configu
rationsxW and yW . Thus the elements in the random walk a
pairs of configurationsXW 5(xW ,yW ) rather than individual con-
figurations. The basic idea is that if we chooset(xW ,yW ) equal
to Green’s function for the second system, then, since

E dyWf1~xW !G2~xW ,yW !f2~yW !5f1~xW !f2~xW !, ~6!

the marginal distribution samples the product of the wa
functions. This will allow us to compute energy differenc
and, in the case when the two function are the same
calculate correct expectations of general operators.

This method was first proposed by Zhang and Kalos@18#
and developed in the framework of Green’s function Mon
Carlo. They applied it to several test problems including
model integral equation and the hydrogen atom and obta
good results. However, the technical problem of large fl
tuations in the number of pairs of walkers in a MC step w
02670
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not completely solved by the authors. We have analyzed
eliminated this problem and have extended BQMC by us
the imaginary-time-dependent Green’s function formalis
that is, within the framework of diffusion Monte Carl
~DMC!. We believe that this will be more accessible, a
will lead more easily to practical realizations of BQMC.

The structure of this paper is the following. In Sec. II, w
present BQMC in more detail and construct the differe
estimators used in this work. After that, we study as a fi
application the case of the harmonic oscillator in any num
of dimensions. This is a first contact with the characterist
of the method when no short-time approximation is need
for Green’s function of the system, since it is known exac
@19#. In Sec. IV, we present the expression for BQMC in t
short-time limit; this generates a set of equations with a si
lar structure to that of DMC when importance sampling
used. The application of these equations for the harmo
oscillator and the hydrogen and helium atoms will be co
ered in Sec. V. Finally we offer our conclusions in Sec. V

II. DESCRIPTION OF THE METHOD

We have remarked above that the bilinear Quant
Monte Carlo method can be applied in two different situ
tions. The first one is to calculate the expectation value
any operator, i.e., to sample the square of the wave funct
The second one is to calculate the difference in energ
between two very similar systems. In the following discu
sion we will adopt this last case since the first one can
recovered considering that the two wave functions are
same and choosingt(xW ,yW ) appropriately. We introduce inte
gral equations satisfied by the functions

C~XW ,t1!5f1~xW ,t1!t~xW ,yW !f2~yW ,t1! ~7!

that have the form

C~XW ,t1!5lE dUW G~XW ,UW ;t1!C~UW ,0!. ~8!

The elements involved in this random walk are pairs
walkers. If we take into account that

f i~xW ,t1!5l iE duW Gi~xW ,uW ;t1!f i~uW ,0!, ~9!

we easily obtain

G~XW ,UW ;t1!5
G1~xW ,uW ;t1!t~xW ,yW !G2~yW ,vW ;t1!

t~uW ,vW !
~10!

andl5l1l2. We can rewrite Eq.~8! to make it more trans-
parent for a random walk interpretation:

C~XW ,t1!5lE dUW G~XW uUW ;t1!N~UW ,t1!C~UW ,0!, ~11!

N(UW ,t1) gives the multiplicity of walkers that come from
the initial pairUW ,
8-2
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BILINEAR DIFFUSION QUANTUM MONTE CARLO METHODS PHYSICAL REVIEW E67, 026708 ~2003!
N~UW ,t1!5E dXW G~XW ,UW ;t1! ~12!

is the branching factor. ThenG is a normalized probability
density function of the pairXW conditional on the pairUW ,

G~XW uUW ;t1!5
G~XW ,UW ;t1!

N~UW ,t1!
. ~13!

The random walk involves branching of the pairs after wh
they are sampled according toG. Of course, we must be abl
to carry out in a practical way the integration in the definiti
of N and to sampleG.

We now discuss the form of the estimators, beginn
with the energy difference. A correct estimator for this usi
any choice oft(xW ,yW ) is

E22E15

E dxWdyWf1~xW !t~xW ,yW !H2~yW !f2~yW !

E dxWdyWf1~xW !t~xW ,yW !f2~yW !

2

E dxWdyWf1~xW !H1~xW !t~xW ,yW !f2~yW !

E dxWdyWf1~xW !t~xW ,yW !f2~yW !

5

E dXW C~XW !@E2,L~yW !2E1,L~xW !#

E dXW C~XW !

, ~14!

where for Hamiltonians of the form

Hi~xW !52
1

2mi
¹xW

2
1Vi~xW !, ~15!

we define two different local energies as

Ei ,L~aW !52
¹aW

2
t~xW ,yW !

2mit~xW ,yW !
1Vi~aW !. ~16!

In the case whenm15m2, we can build a better estimator o
the difference of energies by chosingt(xW ,yW ) appropriately.
That is, if

t~xW ,yW !5G2~xW ,yW ;t2!, ~17!

then

E dyWC~XW !5exp~t2E2!f1~xW !•f2~xW !. ~18!

In this case
02670
g

E22E15

E dXW C~XW !~E2,L~xW !2E1,L~xW !!

E dXW C~XW !

5

E dXW C~XW !~V2~xW !2V1~xW !!

E dXW C~XW !

. ~19!

This choice oft(xW ,yW ) is also the one that must be used wh
both systems are the same and we are calculating expect
values of general operators. Iff25f1 we can compute the
expectation value of any function of the spatial coordinat
f (yW ), by using

^ f &5

E dxWdyWf1~xW ! f ~xW !G1~xW ,yW ;t2!f1~yW !

E dxWdyWf1~xW !G1~xW ,yW ;t2!f1~yW !

5

E dxWf1~xW ! f ~xW !f1~xW !

E dxWf1~xW !f1~xW !

. ~20!

This can be easily generalized to any operator. In this ca

^O&5

E dxWdyWf1~xW !O~xW !G1~xW ,yW ;t2!f1~yW !

E dxWdyWf1~xW !G1~xW ,yW ;t2!f1~yW !

5

E dXW C~XW !OL~xW !

E dXW C~XW !

, ~21!

with the usual definition

OL~xW !5
O~xW !G1~xW ,yW ;t2!

G1~xW ,yW ;t2!
. ~22!

After some relaxation time, our representation of the den
of walkers bilinear in the wave functions becomes

C~XW !5f1~xW !t~xW ,yW !f2~yW !→$XW k%k51
M 5$~xW k ,yW k!%k51

M ,
~23!

with M being the total number of pairs of walkers.
In order to estimate the difference of energies between

systems, we use

E22E15
1

M (
k51

M

@E2,L~yW k!2E1,L~xW k!#. ~24!
8-3
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Settingm15m2 and choosingt(xW ,yW )5G2(xW ,yW ;t2), we ob-
tain

E22E15
1

M (
k51

M

@V2~xW k!2V1~xW k!#. ~25!

This equation is formally identical to the integral Hellman
Feynman theorem@20# and this choice oft(xW ,yW ), when both
systems are the same, allows us to write for any operato

^O&5
1

M (
k51

M

OL~yW k!5
1

M (
k51

M

OL~xW k!, ~26!

since both marginal distributions are identical and are dist
uted as the square of the ground state wave function of
system.

Bilinear diffusion Monte Carlo~BDMC! method may suf-
fer from its own forms of bias in addition to the usual tim
step, relaxation, and population-control errors of ordin
~linear! diffusion Monte Carlo. A good opportunity for ex
ploring and eliminating these problems would be a syst
whose exact time-dependent Green’s function is kno
Then we would not have to concern ourselves about
magnitude of the imaginary time since there is no finite tim
step error. Green’s function for the harmonic oscillator
known analytically and easily sampled for any number
degrees of freedom: this will be our first application.

III. BILINEAR MONTE CARLO FOR THE HARMONIC
OSCILLATOR

The imaginary-time Schro¨dinger equation for an
N-dimensional harmonic oscillator is

2\
]f~xW ,t!

]t
5S E1

\2

2m
¹xW

2
2

1

2
mvxW2Df~xW ,t!. ~27!

This Hamiltonian depends on the massm and the oscillator
constantv. Introducing reduced coordinates for the ener
time, and position we obtain

xW85Amv

\
xW , E85

E

\v
, t85vt, ~28!

the result is

2
]f~xW8,t8!

]t8
5S E81

1

2
¹xW8

2
2

1

2
xW82Df~xW8,t8!. ~29!

This is equivalent to making\51 andm5v51 in Eq.~27!.
Thus when we work with only one harmonic oscillator w
can choosem5v51. With different harmonic oscillators
one of them can havem15v151, and the second

Hm,w~xW !52
1

2m
¹xW

2
1

1

2
mvxW2 ~30!

and we can setv>1. As noted above, the time-depende
Green’s function is known for the harmonic oscillator@19#:
02670
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Gm,v~xW ,yW ;t!5S mv

2p sinhvt D N/2

3expS 2
mv

2 tanhvt
~xW21yW 2!1

mv

sinhvt
xW•yW D .

~31!

We now analyze the case with one Hamiltonian. Here,
branching and sampling parts of Green’s equation for
bilinear wave function are, respectively,

N~uW ,vW !5exp~2Et1!
G1,1~uW ,vW ,2t11t2!

G1,1~uW ,vW ,t2!
, ~32!

G~xW ,yW uuW ,vW !5SAab

2p D N

expS 2
a

2
~xW2xW0!22

b

2
~yW2yW 0!2D ,

~33!

with

a5
sinh~t11t2!

sinht1 sinht2
, ~34!

xW05
uW

a sinht1
1

yW

a sinht2
, ~35!

b5
sinh~2t11t2!

sinht1 sinh~t11t2!
, ~36!

yW 05
vW

b sinht1
1

uW

b sinh~t11t2!
. ~37!

Now we study the behavior of our systems in terms of
two imaginary times,t1 andt2 from Eqs.~7! and~17!. How-
ever, we focus on small values oft1 since this time controls
the evolution of the pairs of walkers and we are interested
applying this method to more general systems, when we
use the short-time limit in order to get an easy approxim
time-dependent Green’s function. In the present case the
no limitation in the values of the times that can be used a
we will explore this possibility fort2.

We have not considered values oft2 smaller thant1,
since in this case the fluctuations of the branching factor
be very large; its moments may not be finite. As a matter
fact, the condition

tanh~2t11t2!,
n tanht2

n212tanht2
~38!

must be satisfied in order that thenth moment of the branch
ing factor be finite. The definitions of these moments a
further details are given in the Appendix. There we also d
cuss how the following short-time limit condition fort1 and
t2 is obtained:

t2>2~n21!t1 , ~39!

that is, ift2 were smaller thant1, even the mean square ofN
would diverge.
8-4
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For simplicity, we begin considering the one-dimension
case (N51) with 4000 walkers and we study different va
ues oft2 for t150.001 and 0.01. The results obtained f
the potential and total energy are shown in the Fig. 1, a
function of t2. We can see that there are significant dev
tions from the exact values for values oft2 smaller than 0.5
and that the deviations are larger for the total energy than
the potential energy. This behavior is caused by a correla
between the members of the pair that causes substantial
tuations in the population. The similar behavior has be
found in the three-dimensional system.

The applicability of the method more generally requir
the relaxation of this condition to smallt2. A possible solu-
tion to this problem is to use a portion of Green’s functi
that correlates the pair as a weight and sample the rest.
is, set

t~xW ,yW !5@G1,1~xW ,yW ;t2!#m ~40!

with m an exponent between 0 and 1. In this case and in
short-time limit the condition~39! becomes

t2

m
>2~n21!t1 , ~41!

so this choice oft(xW ,yW ) is equivalent to using a timet2 /m
instead oft2. This makes the fluctuations of the branchi

FIG. 1. Comparison of the potential~top! and total ~bottom!
energies with the exact values as a function oft2 for two values of
t1. The diamonds correspond tot150.001 and the crosses tot1

50.01.
02670
l
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factor disappear for a small enough value ofm. Broadening
the Green’s function can be interpreted as a particular cas
importance sampling when we useGm21 as importance
function. Since we can use any function between the pair
get the exact value of the energy, we shall use as en
estimator

E5
1

M (
k51

M S 2
¹xW

2
@G1,1~xW k ,yW k ;t2!#m

2@G1,1~xW k ,yW k ;t2!#m
1

1

2
xW k

2D . ~42!

In order to get an unbiased answer, we must divide by
importance function. Hence the expectation value of the
tential is

^V&5

(
k51

M xW k
2

2
@G1,1~xW k ,yW k ;t2!#12m

(
k51

M

@G1,1~xW k ,yW k ;t2!#12m

. ~43!

Computations of the total and the potential energy w
carried out varying the parameterm in two different cases for
t150.001,0.01 andt255t1. We chose these values sinc
there are important biases in both quantities form51 and we
can consider that they both pertain to the short-time lim
The results are shown in Fig. 2. We can see that the

FIG. 2. Comparison of the potential and total energies for t
choices oft1 (t255t1) as a function ofm. The upper panel cor-
responds tot150.001 and the lower panel corresponds tot1

50.01. The diamonds represent the total energy and the cro
represent the potential energy.
8-5
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disappears markedly form<t2, indicating that the elimina-
tion of the bias in the results is related tot2 /m rather than to
t2. The same behavior is present in a three-dimensional
culation.

Results for t150.001, different choices oft2 and m
5t2/2 are given in Table I. The number of walkers is 40 00
and there are 20 blocks with 10 000 steps per block. All
choices oft2 ~event25t1) provide unbiased values and th
values of the variance do not change significantly with
imaginary time. Therefore the introduction of a suitab
choice of t(xW ,yW ) in the density of walkers bilinear in th
wave function can give unbiased values for the estimators
any choice oft1 and t2 with t2>t1. This result is very
important since it allows us to work in the short-time lim
for both imaginary times and indicates that we can use s
dard approximations for time-dependent Green’s functio
making the method applicable to more general systems. N
we consider the behavior of BDMC for two different ha
monic oscillators. As already discussed, we choose the
with m5v51 and for the second one we varym andv. We
first usedt(xW ,yW )5G1,1(xW ,yW ;t2) and found the same behavio
as before. That is, in order to obtain an unbiased result
the energy differencet2 must be large compared tot1. A
good choice for eliminating the bias is againt(xW ,yW )
5@G1,1(xW ,yW ;t2)#m and m>t2. Again the estimator used in
the casem51 must be weighted since the whole Gree
function must be accounted for; that is,

E22E15

v21

2 (
k51

M

yW k
2@G1,1~xW k ,yW k ;t2!#12m

(
k51

M

@G1,1~xW k ,yW k ;t2!#12m

. ~44!

Table II exhibits the energy difference between two on
dimensional harmonic oscillators results for different valu
of v and m, using t150.001, t250.01, andm5t2/2. The
number of walkers, the size of the block and the numbe
the blocks are the same as that for the calculations prese
in the Table I. The energy difference estimator depends
whether m51 or mÞ1. We can see that there are go
results with variances even smaller than those for the ene
This reduction of the variance is especially important in
case where the two systems have equal masses as a c
quence of our choice of the estimator, as may be seen

TABLE I. Potential and total energies for different choices oft2

of the one-dimensional harmonic oscillator wheret150.001 and
m5t2/2.

t2 ^V& E

0.001 0.25002~39! 0.50011~37!

0.002 0.24979~31! 0.49976~32!

0.005 0.25010~42! 0.50016~44!

0.010 0.24998~33! 0.50005~35!

0.100 0.24982~32! 0.50009~34!
02670
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comparing the first row of the table with 0.005 12~27!, the
result obtained from the other estimator.

We are now ready to extend the bilinear diffusion meth
to systems with unknown time-dependent Green’s functi
using two small time steps so that easy approximations
be obtained for them.

IV. BILINEAR DIFFUSION MONTE CARLO IN THE
SHORT-TIME LIMIT

It is known@21,22# that in the short-time limit an approxi
mation to the time-dependent Green’s functions of the s
tems with HamiltoniansHi has the form

Gi~xW ,yW ;t!5S mi

2pt D N/2

expS 2
mi

2t
~xW2yW !2D

3expS 2
t

2
@Vi~xW !1Vi~yW !# D . ~45!

If we choose a form fort(xW ,yW ), we can perform the sam
analysis as in the case where the exact time-depen
Green’s function is known. Instead of that, we analyze
time evolution of our density of walkers,C(XW ,t1), defined
in Eq. ~5!. The time-dependent Schro¨dinger equations for the
two systems are

]f i~xW ,t!

]t
5@Ei2Hi~xW !#f i~xW ,t!, i 51,2. ~46!

The time-dependent equation satisfied byC is then

]C~XW ,t1!

]t1
5t~xW ,yW !

]f1~xW ,t1!

]t1
f2~yW ,t1!

1t~xW ,yW !f1~xW ,t1!
]f2~yW ,t1!

]t1

5t~xW ,yW !@E11E22H1~xW !2H2~yW !#

3f1~xW ,t1!f2~yW ,t1!

5t~xW ,yW !@E11E22H1~xW !2H2~yW !#

3S C~XW ,t1!

t~xW ,yW !
D , ~47!

TABLE II. Energy difference between two one-dimensional h
monic oscillators with massesm and 1 and oscillator constantsv
and 1.

m v E22E1 Exact

1.0 1.0100 0.0050045~76! 0.005
1.0 1.0001 0.000050025~72! 0.00005
1.1 1.0000 20.00003(18) 0
2.0 1.0000 20.00002(26) 0
8-6
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which has the same structure as the importance-sam
Schrödinger equation in imaginary time. We define the qua
tum forces in the usual way

FW aW5
2¹WaW t~xW ,yW !

t~xW ,yW !
, ~48!

whereaW is eitherxW or yW ; we then have

]C~XW ,t1!

]t1
5~E11E22H1~xW !2H2~yW !!C~XW ,t1!

1S ¹xW
2
t~xW ,yW !

2m1t~xW ,yW !
1

¹yW
2
t~xW ,yW !

2m2t~xW ,yW !
D C~XW ,t1!

2
1

2m1
¹WxW•@C~XW ,t1!FW xW#

2
1

2m2
¹WyW•@C~XW ,t1!FW yW#. ~49!

Making the usual analysis@21#, we can write in the short-
time limit

G~XW uUW ;t1!5S m1

2pt1
D N/2

expF2
m1

2t1
S xW2uW 2

t1

2m1
FW uW D 2G

3S m2

2pt1
D N/2

expF2
m2

2t1
S yW2vW 2

t1

2m2
FW vW D 2G ,

~50!

N~UW ,t1!5exp@$E11E22E1,L~uW !2E2,L~vW !%t1#, ~51!

with XW 5(xW ,yW ) and UW 5(uW ,vW ). The time-dependent Green
functions is separated into its sampling and branching pa
The sampling part has the drift terms that depend on bouW

andvW , reflecting the correlation of the walkers.
In general, we have used

t~xW ,yW !5@G1~xW ,yW ;t2!#m

5S m1

2pt2
D mN/2

expS 2
mm1

2t2
~xW2yW !2D

3expS 2
mt2

2
@V1~xW !1V1~yW !# D , ~52!

TABLE III. Comparison between the potential and total energ
for different choices ofm of the one-dimensional harmonic oscilla
tor when the exact propagator results are compared with the d
sion results.

^V& E
m Exact Diff. Exact Diff.

0.010 0.24965~22! 0.25009~30! 0.49975~44! 0.50014~55!

0.005 0.24998~33! 0.24999~37! 0.50005~35! 0.49987~33!
02670
ed
-
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where m is the chosen exponent for the Green’s functio
between 0 and 1, that allows the elements of a pair to be
tightly correlated.

V. APPLICATIONS IN THE SHORT-TIME LIMIT

We have applied our method to three different system
harmonic oscillators and the hydrogen and helium ato
repeating the first to check whether additional problems a
when the exact propagator is replaced by its short-time
proximation.

First we compare the results obtained for the potential
total energies of the one-dimensional harmonic oscilla
when approximate propagators are used. Table III shows
sults fort150.001 andt250.01. We can see that there is n
bias in the diffusion results and that the variance is alm
the same as that obtained using the exact propagator.

Next we made BDMC calculations for all the cases of t
energy differences presented in Table II. The compari
with these data is shown in Table IV. Again we observe t
there are no significant differences between using the e
propagator and its short-time approximations.

We are now in a position to study a more realistic syste
the hydrogen atom with the infinite nuclear mass approxim
tion. This is a tridimensional system whose main differen
from the harmonic oscillator is the singularity in the potent
at the nucleus. When this system is studied with DMC,
importance sampling function that satisfies Kato’s cusp c
dition @24# must be used to eliminate the singularity. How
ever, we first present in Table V results computed without
importance function, usingt150.001, t250.01, and m

s

u-

TABLE IV. Comparison of the energy differences between tw
one-dimensional harmonic oscillators with massesm and 1 and
oscillator constantsv and 1 for the cases when the exact tim
dependent Green’s function is used and when the diffusion equa
is used.

E22E1

m v Exact Diff.

1.0 1.0100 0.0050045~76! 0.0050083~84!

1.0 1.0001 0.000050025~72! 0.000050031~78!

1.1 1.0000 20.00003(18) 0.00021~18!

2.0 1.0000 20.00002(26) 20.00003(32)

TABLE V. Comparison for different expectation values in term
of the number of pairs of walkersNw with the exact result for the
hydrogen atom.

Nw E ^21/r & ^r & ^r 2&

4000 20.4935(43) 20.9929(69) 1.4986~81! 2.972~32!

8000 20.4988(25) 20.9992(50) 1.4970~55! 2.978~23!

16000 20.4960(20) 21.0021(38) 1.4940~48! 2.969~22!

32000 20.5015(14) 21.0017(22) 1.4937~28! 2.966~12!

64000 20.49893(79) 21.0005(20) 1.4995~26! 2.997~13!

Exact 20.5 21 1.5 3
8-7
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5t2/2. They comprise 20 blocks of 10 000 steps each.
can see that the results show no bias. In the case of 64
walkers, we show in Fig. 3 a histogram of the density o
walkers; there is no appreciable difference from the ex
result:

D~r !54r 2 exp~22r !. ~53!

Our next refinement was to use an importance functio

fT~rW !5expS 2
ar

a1r D . ~54!

For any choice of the parameter,a, the cusp condition is
satisfied and moreover

lim
a→`

fT~rW !5exp~2r !5f~rW !. ~55!

This function is included by replacing Eq.~52! by

t~xW ,yW !5fT~xW !G1
m~xW ,yW ;t2!fT~yW ! ~56!

in the definitions of the quantum forces and local energ
This has the correct effect of biasing the random walk
reflect the effect offT(rW) and removing the bias in calcula
ing average energies.

TABLE VI. Comparison for different expectation values
terms of the number of pairs of walkersNw with the exact result for
the hydrogen atom using the importance sampling discussed in
text.

Nw E ^21/r & ^r & ^r 2&

4000 20.4952(32) 20.9967(70) 1.4968~65! 2.975~25!

8000 20.4968(18) 20.9998(45) 1.4865~49! 2.933~19!

16000 20.4991(14) 20.9970(50) 1.5005~57! 2.993~18!

32000 20.5028(27) 20.9930(62) 1.516~16! 3.083~83!

64000 20.49893(94) 20.9990(24) 1.5001~36! 2.998~16!

Exact 20.5 21 1.5 3

FIG. 3. Density of the probability of the hydrogen atom for t
calculation of 64 000 walkers shown in Table V.
02670
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We have done calculations for the same conditions a
Table V for a50.1; the results are shown in Table VI. W
can see that the results are very similar to those obta
without importance sampling.

It is important to note that the role played by the impo
tance sampling functions in BQMC is different from the f
miliar DMC case. For the latter, an importance function clo
to the exact wave function makes the local energy nea
constant, so that the fluctuations in the population are sm
One samples a density close to the square of the wave f
tion. On the other hand, BQMC already samples the squ
of the wave function without any importance function. If w
use an importance function close to the exact one, we wo
sample the wave function to the fourth power. This wou
create large fluctuations when the wave function is small,
at large distances from the nucleus. Such inefficiency d
not arise for our choice of importance sampling functi
since

lim
r→`

fT~r !5exp~2a!, ~57!

so that far from the nucleus, the importance function do
not vanish and does not generate any spurious fluctuati
The importance function serves only to remove any sin
larities in the local energy, and must therefore satisfy a
cusp conditions.

Finally we study the ground state of the helium atom su
posing again that the nucleus has an infinite mass. This
six-dimensional system. Preliminary calculations using
usual choices oft1 , t2, andm, but without any importance
function, yielded biased results as well as significant fluct
tions in the population. The latter effect derives from t
singularities in the local energy at the nucleus and dis
peared when we introduced an importance function that
isfies the cusp conditions:

fT~rW1 ,rW2!5expS 2
Zar 1

a1r 1
2

Zar 2

a1r 2
1

br 12

2~b1r 12!
D ,

~58!

with Z being the charge on the nucleus. This is the obvio
generalization of the form used for the hydrogen atom. Af
some experimentation we observed that the bilinear qua
ties were still biased even though there were no appreci
fluctuations of the population. It turned out that only a sm
fraction of the population carried significant weights in t
evaluation of bilinear quantities. These weights are a rap
varying function of the separation of the walkers in a pair,
that the fluctuations are sensitive to the distribution of se
rations, and therefore to the dimensionality. In other wor
the bias is a consequence of inadequate importance sam
of the pair separations.

An obvious solution to this problem is to smooth the fun
tion that determines the pair separation. Since this functio
related to the time-dependent Green’s function with ima
nary timet2, the function is less peaked when a higher va
of t2 is used. Within the short-time approximation, we mu
be careful with its magnitude. However, the role played h

he
8-8
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by t2 is not the same as the usual diffusion time step, wh
governs the time evolution of the walkers, for us,t1.

Results obtained fort150.001,t250.1, andm50.1 and
with a5b50.2 for the importance sampling parameters
shown in Table VII. The exact results are taken from a p
cise variational calculation@23#. We can see that the BQMC
results are quite good especially for the largest population
this case we also calculated other expectation values,^1/r 12&,
^r 12&, and^r 12

2 &. We have obtained, respectively, 0.9413(7),
1.424(1), and2.521(5) to be compared to the exact on
0.9458, 1.422, and 2.516. All these results, except the bia
result for^1/r 12&, seem to indicate that a higher value fort2
does not generate any additional bias. In addition, the rati
standard deviation to the average value of the weight
drastically improved with the larger value.

We also studied the behavior of different electron den
ties for the helium atom. The results obtained for t
128 000-walker calculation of the charge density,D(r ), are
compared to precise values from@23# in the top panel of Fig.
4. We note differences between both densities around
maximum that may indicate that this quantity is sensitive
the deviations of the time-dependent Green’s function of
pair from its short-time limit. The sensitivity disappeare
when we calculated the electron density as a function of
separation between the two electrons, the so-called intra
density,H(r ). This is shown in the lower plot of Fig. 4.

In summary, the accurate results validate the BQMC
proach. However, the technique is not as efficient as
would wish, due to the increased variance of the weights
the calculations of the helium atom. A more complete und
standing of the source of inefficiency and its cure will be
subject of further research.

VI. CONCLUSIONS

BQMC ~Bilinear quantum Monte Carlo! has allowed us to
sample the square of the wave function and to calcu
small energies differences efficiently for some simple s
tems. We have been able to control the fluctuations in
normalization or branching by an appropriate choice of
function that correlates the members of the pairs. We h
adapted the use of short-time Green’s functions to the b
ear case with a simple and transparent implementation

TABLE VII. Comparison for different expectation values i
terms of the number of pairs of walkersNw with the exact result for
the helium atom using the importance sampling discussed in
text.

Nw E ^V& ^r 1& ^r 1
2&

4000 22.890(8) 25.79(2) 0.929~5! 1.19~2!

8000 22.896(3) 25.78(1) 0.933~3! 1.202~9!

16000 22.897(3) 25.78(1) 0.932~2! 1.193~6!

32000 22.900(4) 25.804(7) 0.932~2! 1.195~5!

64000 22.899(2) 25.796(6) 0.933~4! 1.21~2!

128000 22.900(2) 25.807(2) 0.930~1! 1.191~3!

Exact 22.9037 25.8074 0.9294 1.1935
02670
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applied it successfully to the harmonic oscillator and the
drogen and helium atoms.
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APPENDIX

The nth moment of the branching factor is defined as

Mn5E dUW Nn~UW !C~UW !. ~A1!

e

FIG. 4. Comparison of the charge~top! and intracule~bottom!
densities obtained with the BQMC~dashes lines! to the exact ones
~solid lines!.
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If we use the expression forN ~32! and take into account tha

C~UW !5
1

Ap
expS 2

1

2
~uW 21vW 2! DG1,1~uW ,vW ,t2!, ~A2!

we can write

Nn~UW !C~UW !} expS 2
a

2
~uW 2uW 0!22

g

2
vW 2D , ~A3!

with

a511an511
n

tanh~2t11t2!
2

n21

tanht2
, ~A4!

bn5
n

sinh~2t11t2!
2

n21

sinht2
, ~A5!

uW 05
bn

a
vW , ~A6!

g5a2bn . ~A7!

Sincean.bn , it is clear that the only condition that mus
hold for Mn to be finite is thata be positive. This easily
leads to

tanh~2t11t2!,
n tanht2

n212tanht2
, ~A8!
t/

od

s,

es

te

pu

02670
the first condition mentioned in the text. Since tanh(x),1,
this condition is simple ift2 is large; that is, if

t2. 1
2 ln n, ~A9!

the condition is satisfied for everyt1.
Equation~A8! is not easy to interpret analytically in th

short-time limit. We can obtain an useful form by neglecti
the tanht2 in its denominator:

tanh~2t11t2!

tanht2
<

n

n21
. ~A10!

This is a more restrictive condition; as a matter of fact, t
condition keeps the integral

E duW dvW
G1,1

n ~uW ,vW ,2t11t2!

G1,1
n21~uW ,vW ,t2!

finite without considering the effect of the ground-state wa
functions as in Eq.~A1!. In the short-time limit, Eq.~A10!
becomes

t2>2~n21!t1 ,

which is the second equation mentioned in the text.
ys.
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