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The standard method of quantum Monte Carlo for the solution of the 8iclyer equation in configuration
space can be described quite generally as devising a random walk that generates—at least asymptotically—
populations of random walkers whose probability density is proportional to the wave function of the system
being studied. While, in principle, the energy eigenvalue of the Hamiltonian can be calculated with high
accuracy, estimators of operators that do not commute the Hamiltonian cannot. Bilinear quantum Monte Carlo
(BQMC) is an alternative in which the square of the wave function is sampled in a somewhat indirect way.
More specifically, one uses a pair of walkers at positioasdy and introduces stochastic dynamics to sample
di(X)t(x,y) ¢;(y), whereg;(x) and¢;(y) are eigenfunctions ajpossibly different Hamiltonians, and(x,y)
is a kernel that correlates positiorgndy. Using different Hamiltonians permits the accurate computation of
small energy differences. We review the conceptual basis of BQMC, discuss qualitatively and analytically the
problem of the fluctuations in the branching, and present partial solutions to that problem. Finally we exhibit
numerical results for some model systems including harmonic oscillators and the hydrogen and helium atoms.
Further research will be necessary to make this a practical and generally applicable scheme.
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[. INTRODUCTION In this paper, we present work in progress to find unbiased
expectation values of operators that do not commute with the
The term quantum Monte Carl@MC) is used to encom- Hamiltonian. The fundamental difficulty is that most existing
pass different approaches for solving the Qtihger equa- methods in QMC use a delta-function basis, and therefore
tion of a system using stochastic technigliéé Most of the solution that arises from the random walk cannot be
these techniques represent the state in questisnally the  squared directly: it becomes necessary to “project” by way
ground stateas a set of positions in the space, which areof a mixed estimator, which is simply the sum of a trial
distributed in proportion to the wave function for that state.function over the positions generated in the random walk.
This representation combined with a trial wave function caPBQMC avoids this dilemma by sampling the square of the
be used to calculate exactly for bosonic systems, both th@ave function, albeit in an indirect way.
en(?[rgy ?r‘: me Etate,lf‘”q ex?/(\a/ﬁtations of or:ﬁratorls thatfc;ﬁm— The mixed estimator is an approximation that can be im-
mute wi e Hamiltonian. When we sum the values o i i i
trial wave function over the positions of the random Walkfegz)%vrgiir?;t%sr:n?o t?hee e;;gcao;?gir;dmgggl(ﬂ).f I,Ih(eﬁ Tsyl/sstzrr]n

we say that we are using a “mixed estimator.” h :
. . ¢ .under study, one can approximate a correct estimator
QMC techniques have been applied with great success in Y PP

atomic and molecular physi¢4,2], nuclear physic$3], and (p|A|p)
condensed matter physi¢4]. However, there are still open APZW (1)
problems such as the sign problem for fermionic systems and
the unbiased evaluation of the expectation value of operatorgs the linear combination of the mixed and variational esti-
that do not commute with the Hamiltonian. The sign problemmators, respectively,
is caused by the fact that the states of a fermionic system do
not have a defined sign, so they cannot be used as the prob- (#1lAlp) (p1lAl 1)
ability distribution function need by QMC techniques. We Am= (prld) A= (dr|b7) @
T TIYT
can eliminate this problem by multiplying by a trial function,
but in this case we will not obtain the exact energy since wavhich has error quadratic in the difference between the two
are forcing our representation to have the same zeros as tM@ve functions § = ¢— 7). That is
trial function. Different techniques have been applied to _ _ 2
overcome this problem5] and in the recent years the fer- Ap=2Am=A, T O(A). &
mion Monte Carlo technique is providing very promising This method has been widely usgg] because of its simplic-
results[6]. ity, but it provides an estimate of the expectation value
whose bias is hard to assess. This problem of the bias has
been eliminated by using two related methods: the future

*Permanent address: Departamento dgcRiModerna, Facultad walking method and the time correlation method. The first

de Ciencias, Granada E-18071, Spain. one is based on the estimation of the rafib¢; using the
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asymptotic offspring coming from the branching tef@j. In not completely solved by the authors. We have analyzed and
this line, different tagging algorithms have been constructe@liminated this problem and have extended BQMC by using
to properly account for the asymptotic number of descenthe imaginary-time-dependent Green’s function formalism,
dants[10—12. The tagging process can be eliminated by anthat is, within the framework of diffusion Monte Carlo
evaluation of a weight proportional to the expected future(DMC). We believe that this will be more accessible, and
progeny of every walker after each sfgf8]. This method is  will lead more easily to practical realizations of BQMC.
asymptotically exact and has been successfully applied to The structure of this paper is the following. In Sec. II, we
certain problems to obtain very accurate res(ilt6—14. present BQMC in more detail and construct the different
However all of these methods, which rely on forward walk- estimators used in this work. After that, we study as a first
ing, are technically delicate and lead to a signal-to-noise raapplication the case of the harmonic oscillator in any number
tio that decays to zero at large imaginary time, when theof dimensions. This is a first contact with the characteristics
methods are least biased. The time correlation method alsaf the method when no short-time approximation is needed
permits calculating the rati@/ ¢t and has been recently for Green'’s function of the system, since it is known exactly
applied in the context of path integral Monte Cafl®b]. [19]. In Sec. IV, we present the expression for BQMC in the
Another challenging problem for QMC is the calculation short-time limit; this generates a set of equations with a simi-
of the energy difference between two similar systems. Thidar structure to that of DMC when importance sampling is
can be expressed in terms of matrix elements of the wavased. The application of these equations for the harmonic
functions. That is, ifp; for i = 1,2 denote the ground states of oscillator and the hydrogen and helium atoms will be cov-

the systems with Hamiltoniartd; , then ered in Sec. V. Finally we offer our conclusions in Sec. VI.
o (BalHa—Hyl ) Il. DESCRIPTION OF THE METHOD
Er-BEy=—F (4)
(1] #2)

We have remarked above that the bilinear Quantum
assuming that the number of degrees of freedom of botfMonte Carlo method can be applied in two different situa-
systems is the same. If an independent calculation of botHons. The first one is to calculate the expectation value of
energies is used for calculating the difference, the statisticsny operator, i.e., to sample the square of the wave function.
variance of the mean can be comparable with the energyhe second one is to calculate the difference in energies
difference leading to no valuable information. For some sysbetween two very similar systems. In the following discus-
tems, it has been possible to correlate the two random walkgion we will adopt this last case since the first one can be
such that there is a important cancellation in the variancelecovered considering that the two wave functions are the
However, this is possible only for few systefiss,17. same and choosint(X,y) appropriately. We introduce inte-

A solution to both problems of calculating energy differ- gral equations satisfied by the functions
ences and expectations of operators is provided by bilinear

quantum Monte CarlgBQMC). The basic idea is to corre- W (X, 71)= (X, 7)UX,Y) oY, 71) 7
late the configurations representing the two related wave
functions. That is, BQMC aims to sample that have the form

‘P(X):¢1(X)t(x,y)¢2(y) (5) \P(X’Tl):)\f dUG()Z,G,Tl)\P(0,0) (8)

We shall hereafter use capital letters to denote pairs of vec-
tors. The functiort(x,y) is chosen to correlate the configu- The elements involved in this random walk are pairs of
rationsx and 37 Thus the elements in the random walk arewalkers. If we take into account that
pairs of configuration& = (x,y) rather than individual con- _ .. .
figurations. The basic idea is that if we chodér,y) equal d’i(x’Tl):)‘if duG;(x,u;71) ¢i(u,0), )
to Green'’s function for the second system, then, since
we easily obtain
d X X, = X X), N - .o
J Yé1(X)G2(X,Y) da(Y) = ¢1(X) d2(X) (6) o Gy(%.0: Tt (%.9)Gl§. 5 72)
G(X,U;m)= == (10
the marginal distribution samples the product of the wave t(u,v)
functions. This will allow us to compute energy differences _ _
and, in the case when the two function are the same, t8NdA=X\1\,. We can rewrite Eq(8) to make it more trans-
calculate correct expectations of general operators. parent for a random walk interpretation:
This method was first proposed by Zhang and K&lk&
and developed in the framework of Green's function Monte \I,()_()’Tl):)\J dU I'(X|U;7)N(U,7)¥(U,0), (11)
Carlo. They applied it to several test problems including a
model integral equation and the hydrogen atom and obtained _
good results. However, the technical problem of large flucN(U,71) gives the multiplicity of walkers that come from
tuations in the number of pairs of walkers in a MC step waghe initial pairU,
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N(U,7y)= f dXG(X,U;y) (12 f dXW (X) (Ey ()~ Eqy (X))

E2_ El:

is the branching factor. Theh is a normalized probability f dXW¥(X)
density function of the paiX conditional on the paitJ,

. f dXW (X)(Va(X) = V(X))
_ G(X,U;y) _

N(U,Tl) ’

I'(X|U;7y) (13) (19)

jd)?\lf()?)

The random walk involves branching of the pairs after which

they are sampled according o Of course, we must be able ThiS choice oft(x,y) is also the one that must be used when

to carry out in a practical way the integration in the definition POth Systems are the same and we are calculating expectation
of N and to sampld. values of general operators. #f,= ¢, we can compute the

We now discuss the form of the estimators beginningexpectation value of any function of the spatial coordinates,
with the energy difference. A correct estimator for this usingf(y), by using
any choice oft(x,y) is

f dxdyy(X)f(X)Gy(X,y: 75) 1 (Y)

f dxdy 1 (X)t(X,Y)Ha(Y) do(Y) (f)=

E,—E,= f dxdy 1 (X)G1(X,Y; 72) da(y)

f dxdy by ()L(%,y) ol )

f A5 (X) e(X)
f dxdy e (X)H(X)E(X,Y) da(Y) = — (20)
— de¢1(x)¢1(x)

f dxdy e, (X)t(X,y) da(Y)

This can be easily generalized to any operator. In this case

| aRv 8L ()~ B 0] o
= , (149 J dxdy¢1(X)O(X)G1(X,Y; 72) h1(Y)
J dXW¥(X) (0)=

| a5d56,(06,5.5:72) 949
where for Hamiltonians of the form
f dXW¥(X)O,(X)

1, (2D)
H,(X)=—=—V:+V,(x), 15 I ’
(0 2m; x i(X) @9 de\If(X)
we define two different local energies as with the usual definition
L VEGY) Gy
Ei’L(a)Z—a—_,_,'f‘Vi(a). (16 OL(;)zw (22
2mit(X,y) Gl(§,37; T)

In the case whem; =m,, we can build a better estimator of After some relaxation time, our representation of the density
the difference of energies by chosingx,y) appropriately. of walkers bilinear in the wave functions becomes
That is, if

o o W (X)= $100t,Y) oY) =X 1= { (X, YO 1,
t(X:y):Gz(nyJz)a (17) (23)

then with M being the total number of pairs of walkers.
In order to estimate the difference of energies between the
L R R systems, we use
f dyW¥ (X)=exp(72E2) ¢1(X) - $2(X). (18

M

1 R .
. Eo—E;=— > [Eo(yi)—Eqp(X)]. (24)
In this case M =1
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Settingm; =m, and choosing(X,y) = G,(X,y;7,), we ob- G me \N2
tain XY= S Sinha
1% R - « Mw 2,00 Mo . .
EZ_El_Mk:l [Va(x) = Vi(X) ] (25 &0~ Sanmer ™ Y ) s XY
(31

This equation is formally identical to the integral Hellmann-
Feynman theorerf20] and this choice of(i,;?), when both We now analyze the case with one Hamiltonian. Here, the
systems are the same, allows us to write for any operator branching and sampling parts of Green’s equation for the
bilinear wave function are, respectively,

M
O)=y E OL(yW = 2 O (%), (26) . Gy 4(U,0,27,+ 7)
k= N(u,v)=exp2Er;)— — , (32
Gl,l(u!viTZ)

since both marginal distributions are identical and are distrib-
uted as the square of the ground state wave function of the [aB\™ o B
v vl ) — _ v v \2__ S \v.\2
system. F(X,y|u.v)—<?) exp( 5 (X=%0)"= 5 (Yy=Yo)
Bilinear diffusion Monte CarlgBDMC) method may suf-

fer from its own forms of bias in addition to the usual time- (33
step, relaxation, and population-control errors of ordinaryith
(linean diffusion Monte Carlo. A good opportunity for ex-
ploring and eliminating these problems would be a system _ sinh(7y+73) 24
whose exact time-dependent Green's function is known. “~ Sinhr, sinh7,’ (34
Then we would not have to concern ourselves about the
magnitude of the imaginary time since there is no finite time- . u y
step error. Green’s function for the harmonic oscillator is onasinhr +asinhr ) (35
known analytically and easily sampled for any number of ! 2
degrees of freedom: this will be our first application. sin(27;+ 75)
=— - , (36)
lll. BILINEAR MONTE CARLO FOR THE HARMONIC sinhr sinf(7y + 72)
OSCILLATOR > >
v u
The imaginary-time Schdinger equation for an yo:,Bsinhrl +,Bsinr( Tt 7)) (37

N-dimensional harmonic oscillator is
Now we study the behavior of our systems in terms of the

aqﬁ(i, 7) 72 1 two imaginary timesy; and7, from Egs.(7) and(17). How-
_ﬁT:( _V'_ —mwx $(x,7). (27) ever, we focus on small values of since this time controls
the evolution of the pairs of walkers and we are interested in
This Hamiltonian depends on the massand the oscillator applying this method to more general systems, when we will
constantw. Introducing reduced coordinates for the energy,use the short-time limit in order to get an easy approximate

time, and position we obtain time-dependent Green'’s function. In the present case there is
no limitation in the values of the times that can be used and
-, mew. _E , we will explore this possibility forr,.
X'=\ 7> BE'=g0 m=or (28) We have not considered values of smaller thanry,
since in this case the fluctuations of the branching factor can
the result is be very large; its moments may not be finite. As a matter of
. fact, the condition
dp(x", ") 1 )
- = ’+2Va ——x’ )gb(x 7). (29 ntanhr,
ar tanh(27+ 7)< (39

n—1-tanhr,
This is equivalent to makinj=1 andm=w=1 in Eq.(27).
Thus when we work with only one harmonic oscillator we .
can choosem=w=1. With different harmonic oscillators
one of them can have;=w;=1, and the second

must be satisfied in order that thth moment of the branch-
ing factor be finite. The definitions of these moments and
further details are given in the Appendix. There we also dis-
cuss how the following short-time limit condition fey; and

R 1,1 7, is obtained:
H o w(X) 2mVX+ 5 MwX (30 =2(n—1)m, 39

and we can setb=1. As noted above, the time-dependentthat is, if r, were smaller tham,, even the mean square §f
Green’s function is known for the harmonic oscillafd®]: would diverge.
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FIG. 1. Comparison of the potentiglop) and total (bottom) FIG. 2. Comparison of the potential and total energies for two

energies with the exact values as a functior-pfor two values of ~ choices ofr; (7,=57,) as a function ofu. The upper panel cor-
1. The diamonds correspond tg=0.001 and the crosses tq ~ responds tor;=0.001 and the lower panel corresponds #p
=0.01. =0.01. The diamonds represent the total energy and the crosses

represent the potential energy.

For simplicity, we begin considering the one-dimensional ) _
case N=1) with 4000 walkers and we study different val- factor disappear for a small enough valuewof Broadening
ues of 7, for 7;=0.001 and 0.01. The results obtained for the Green’s function can be interpreted as a particular case of
the potential and total energy are shown in the Fig. 1, as 4nportance sampling when we ugg“ * as importance
function of 7,. We can see that there are significant devia-function. Since we can use any function between the pair and
tions from the exact values for values of smaller than 0.5 g€t the exact value of the energy, we shall use as energy
and that the deviations are larger for the total energy than fopStimator
the potential energy. This behavior is caused by a correlation " 2 —
between the members of the pair that causes substantial fluc- 1 VLG Yis m2) 1# 1.,
tuations in the population. The similar behavior has been E:M 2 N e P +§Xk . (42

. , ) 2[Gy Xk, Yk 72)]
found in the three-dimensional system. ’

The applicability of the method more generally requiresin order to get an unbiased answer, we must divide by the
the relaxation of this condition to smath. A possible solu- importance function. Hence the expectation value of the po-
tion to this problem is to use a portion of Green’s functiontential is
that correlates the pair as a weight and sample the rest. That

is, set M X2 - -
. .. 2 5 1G1aX i)
t(X,Y)=[G1,1(X,y;72) ]# (40) (VY= —w ) (43
with « an exponent between 0 and 1. In this case and in the kzl [Gra(Xi, Vi )11

short-time limit the conditior{39) becomes

Computations of the total and the potential energy were
2 =2(n—1)7,, (41) carried out varying the parameterin two different cases f_or
70=0.001,0.01 andr,=57;. We chose these values since
o there are important biases in both quantitiesiier 1 and we
so this choice ot(x,y) is equivalent to using a time,/u can consider that they both pertain to the short-time limit.
instead ofr,. This makes the fluctuations of the branching The results are shown in Fig. 2. We can see that the bias
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TABLE I. Potential and total energies for different choicesrof TABLE Il. Energy difference between two one-dimensional har-
of the one-dimensional harmonic oscillator wherg=0.001 and  monic oscillators with masses and 1 and oscillator constanis
n=T752. and 1.

T2 (V) E m ® E,—E; Exact
0.001 0.2500R9) 0.5001137) 1.0 1.0100 0.00500436) 0.005
0.002 0.2497881) 0.4997632) 1.0 1.0001 0.00005002B2) 0.00005
0.005 0.2501(12) 0.5001644) 1.1 1.0000 —0.00003(18) 0
0.010 0.249983) 0.5000%35) 2.0 1.0000 —0.00002(26) 0
0.100 0.2498R2) 0.5000934)

comparing the first row of the table with 0.00522), the
disappears markedly fqu< 7,, indicating that the elimina- result obtained from the other estimator.

tion of the bias in the results is related#g/ u rather than to We are now ready to extend the bilinear diffusion method
7,. The same behavior is present in a three-dimensional calo systems with unknown time-dependent Green’s function,
culation. using two small time steps so that easy approximations can

Results for 7;=0.001, different choices of, and x  be obtained for them.
= 7,/2 are given in Table I. The number of walkers is 40 000,
and there are 20 blocks with 10 000 steps per block. All the v BILINEAR DIFFUSION MONTE CARLO IN THE

choices ofr, (event,= 7;) provide unbiased values and the SHORT-TIME LIMIT

values of the variance do not change significantly with the ) o )
imaginary time. Therefore the introduction of a suitable Itis known[21,22 that in the short-time limit an approxi-
choice oft(x,y) in the density of walkers bilinear in the mation _to the tl_me—_dependent Green's functions of the sys-
wave function can give unbiased values for the estimators fofems with Hamiltoniang4; has the form

any choice ofr, and r, with 7,=r7,. This result is very N/2

important since it allows us to work in the short-time limit Gi(X.y:7)= ﬂ) exp( _ ﬁ(ﬁ—ﬁﬂ)

for both imaginary times and indicates that we can use stan- 27T 27

dard approximations for time-dependent Green’s functions,

making the method applicable to more general systems. Now X ex;< _ I[Vi(§)+Vi()7)]) _ (45)

we consider the behavior of BDMC for two different har- 2

monic oscillators. As already discussed, we choose the first

with m=w=1 and for the second one we varyandw. We If we choose a form fot(x,y), we can perform the same
first usedt(x,y) = Gy 4(X,y; 7,) and found the same behavior analysis as in the case where the exact time-dependent
as before. That is, in order to obtain an unbiased result fofsreen’s function is known. Instead of that, we analyze the
the energy difference,, must be large compared tg. A time evolution of our density of walker&(X,r;), defined
good choice for eliminating the bias is agaifx,y) in Eq.(5). The time-dependent Schfimger equations for the
=[Gy 4(X.y;7)]* and u=r1,. Again the estimator used in WO Systems are

the casem=1 must be weighted since the whole Green’s
function must be accounted for; that is, d i (X 7) _
———— =[E;—H; (x)]¢ (x 7), 1=1,2. (46)

w—1 R .
> k§=:1 Vel Gia(Xk Y m2) ]~ The time-dependent equation satisfiedbyis then
E2_ El: M . (44) N
IZl [Gl,l(Xk,yk,Tz)]l " w:t(;&)m(ﬁz(y 1)
T1
Table 1l exhibits the energy difference between two one- d>z(y 1)
dimensional harmonic oscillators results for different values FUXY) (X, 71)
of w andm, using 7;=0.001, 7,=0.01, andu= 7,/2. The . R R
number of walkers, the size of the block and the number of =t(X,Y)[E1+E>—H1(X)—Hx(y)]
the blocks are the same as that for the calculations presented R R
in the Table I. The energy difference estimator depends on X 1(X,11) oy, 71)
whetherm=1 or m#1. We can see that there are good - - - -
results with variances even smaller than those for the energy. =tOGY)[Ert Ea—Hi() —Ha(y) ]
This reduction of the variance is especially important in the (X, )
case where the two systems have equal masses as a conse- % (47)
guence of our choice of the estimator, as may be seen by t(x,y)
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which has the same structure as the importance-sampled TABLE IV. Comparison of the energy differences between two
Schralinger equation in imaginary time. We define the quan-one-dimensional harmonic oscillators with massesand 1 and

tum forces in the usual way oscillator constants» and 1 for the cases when the exact time-
dependent Green'’s function is used and when the diffusion equation
. 2Vit )Z, *) is used.
Ff#, (48)
t(xly) E2_ El
R . m 1) Exact Diff.
wherea is eitherx or y; we then have
1.0 1.0100 0.00500436) 0.005008834)
0"\1’()2, 1) - R . 1.0 1.0001 0.00005002B2) 0.0000500318)
o~ (EatEa=Ha(X) —Ha(y) W (X, 71) 1.1 1.0000 —0.00003(18) 0.000218)
! 2.0 1.0000 —0.00002(26) —0.00003(32)
2. = 2, > =
Vitxy)  Vit(x.y) R
—+ — | W(X, 1)
2mit(X,y)  2mat(Xx,y) where u is the chosen exponent for the Green’s function,
1 between 0 and 1, that allows the elements of a pair to be less
— V- [V(X,7)F{] tightly correlated.
2m; X ' X
1. > 2 V. APPLICATIONS IN THE SHORT-TIME LIMIT
- z—szg- [W(X,m)Fy]. (49

We have applied our method to three different systems:

Making the usual analysig21], we can write in the short- harmo_nic osci!lators and the hydrogeq _and helium atoms,
repeating the first to check whether additional problems arise

time limit . . :
when the exact propagator is replaced by its short-time ap-
o m, |2 m (. - 7 -\2 proximation.
L(X|U;ry) = XQ— 5| X—u—5—F; First we compare the results obtained for the potential and
27Ty 27 2m;

total energies of the one-dimensional harmonic oscillator
m, )N’Z F{ m ( . . T - )T when approximate propagators are used. Table Il shows re-

X sults forr;=0.001 andr,=0.01. We can see that there is no

bias in the diffusion results and that the variance is almost

(500 the same as that obtained using the exact propagator.

. . . Next we made BDMC calculations for all the cases of the
N(U,r)=exd{E;+E,—E; (u)—E, (v)}71], (1)  energy differences presented in Table Il. The comparison
L L with these data is shown in Table V. Again we observe that

with X=(x,y) andU=(u,v). The time-dependent Green’s there are no significant differences between using the exact

functions is separated into its sampling and branching partqropagator and its short-time approximations.

The sampling part has the drift terms that depend on both ~ We are now in a position to study a more realistic system:

andv, reflecting the correlation of the walkers. the hydfoge” atpr’_n with _the infinite nuclear mass approxima-

In general, we have used tion. This is a tr|§j|men.5|onal' system Whos_e main dlfferen_ce
from the harmonic oscillator is the singularity in the potential

t()? »):[G ()2 o ) f’it the nucleus. When this_system is _stl_Jdied with DMC, an

24 1X.Y: 72 importance sampling function that satisfies Kato’s cusp con-

m, )MN/Z ;{ Mml(» . 2) dition [24] must be used to eliminate the singularity. How-

- 2(x—y
27'2

27T

ever, we first present in Table V results computed without an
importance function, usingr;=0.001, 7,=0.01, and

27T,

M To > >
X ex;{ 5 [Vi(x) +V1(Y)]) J (52) TABLE V. Comparison for different expectation values in terms
of the number of pairs of walkerd,, with the exact result for the

TABLE Ill. Comparison between the potential and total energieshydrogen atom.
for different choices ofx of the one-dimensional harmonic oscilla-

tor when the exact propagator results are compared with the diffu- Nw E (=1r) (r) (r#)
sion results. 4000 —0.4935(43) —0.9929(69) 1.49881) 2.97432)
V) E 8000 —0.4988(25) —0.9992(50) 1.497®5 2.97823)

16000 —0.4960(20) —1.0021(38) 1.494@8) 2.96922)
32000 —0.5015(14) —1.0017(22) 1.49328) 2.96612)
0.010 0.249682) 0.2500930) 0.4997%44) 0.5001455) 64000 —0.49893(79) —1.0005(20) 1.499%26) 2.99713)
0.005 0.24993) 0.2499937) 0.5000%35) 0.4998733) Exact -05 ~1 15 3

% Exact Diff. Exact Diff.
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0.6

We have done calculations for the same conditions as in
Table V for «=0.1; the results are shown in Table VI. We

os 1 can see that the results are very similar to those obtained
without importance sampling.
ol _ It is important to note that the role played by the impor-

tance sampling functions in BQMC is different from the fa-
miliar DMC case. For the latter, an importance function close
to the exact wave function makes the local energy nearly
constant, so that the fluctuations in the population are small.
One samples a density close to the square of the wave func-
tion. On the other hand, BQMC already samples the square
01 1 of the wave function without any importance function. If we
use an importance function close to the exact one, we would
0 . . . . sample the wave function to the fourth power. This would
) create large fluctuations when the wave function is small, say
at large distances from the nucleus. Such inefficiency does
FIG. 3. Density of the probability of the hydrogen atom for the not arise for our choice of importance sampling function

D(r)
=3
@

T

calculation of 64 000 walkers shown in Table V. since
=7,/2. They comprise 20 blocks of 10000 steps each. We lim (1) =expg —a), (57)
can see that the results show no bias. In the case of 64 000 r—oo

walkers, we show in Fig3 a histogram of the density of

walkers; there is no appreciable difference from the exacto that far from the nucleus, the importance function does
result: not vanish and does not generate any spurious fluctuations.
The importance function serves only to remove any singu-
—Ar2 _
D(r)=4r"exp(—2r). (53 larities in the local energy, and must therefore satisfy any
cusp conditions.

Finally we study the ground state of the helium atom sup-
posing again that the nucleus has an infinite mass. This is a
. (54  six-dimensional system. Preliminary calculations using the

usual choices of;, 75, andu, but without any importance
For any choice of the parametet, the cusp condition is function, yielded biased results as well as significant fluctua-

Our next refinement was to use an importance function:

arl

¢T<F>=exp(——

atr

satisfied and moreover tions in the population. The latter effect derives from the
singularities in the local energy at the nucleus and disap-

lim ¢T(F):eXF( —r)= ¢(;)_ (55) peared when we introduced an importance function that sat-
o0 isfies the cusp conditions:

This function is included by replacing E2) by - - Zary Zar, Bris

dr(ri,rp)=expg — - )
- - > > = > atry atry, 2(B+ry)
(X.Y) = br(X)GL(K. i 72) r(¥) (56 vt 2l

in the definitions of the quantum forces and local energies.

This has the correct effect of biasing the random walk towith Z being the charge on the nucleus. This is the obvious

- i o generalization of the form used for the hydrogen atom. After
reflect the effect oipr(r) and removing the bias in calculat- gome experimentation we observed that the bilinear quanti-
Ing average energies. ties were still biased even though there were no appreciable
. : . . fluctuations of the population. It turned out that only a small
e R e i S e acton o he popuiaton cared signifcant weights i the

. . . . . evaluation of bilinear quantities. These weights are a rapidly
the hydrogen atom using the importance sampling discussed in thé_ . . - . .
text. varying funct|on. of the separa.u.on of the walkgrs in a pair, so
that the fluctuations are sensitive to the distribution of sepa-
N,, E (~1Ir) (ry (r?) rations, z_;md therefore to the _dimensional_ity. In other words_,
the bias is a consequence of inadequate importance sampling

4000 —0.4952(32) —0.9967(70) 1.496®5 2.97525) of the pair separations.

8000 —0.4968(18) —0.9998(45) 1.48689) 2.93319) An obvious solution to this problem is to smooth the func-
16000 —0.4991(14) —0.9970(50) 1.500%7) 2.99318) tion that determines the pair separation. Since this function is
32000 -—0.5028(27) —0.9930(62) 1.51@6) 3.08383 related to the time-dependent Green’s function with imagi-
64000 —0.49893(94) —0.9990(24) 1.500B6) 2.99816) nary timer,, the function is less peaked when a higher value
Exact -05 -1 1.5 3 of 7, is used. Within the short-time approximation, we must
be careful with its magnitude. However, the role played here
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TABLE VII. Comparison for different expectation values in 0®
terms of the number of pairs of walkelg, with the exact result for
the helium atom using the importance sampling discussed in the

text. 0.7 |
N E \% (r) (r$) er
4000 —2.890(8) —5.79(2) 0.926) 1.192) < T
8000 —2.896(3) —5.78(1)  0.938)  1.2029) ° oal

16000 —2.897(3) -5.78(1)  0.93®)  1.1936)
32000 —2.900(4) —5.804(7) 0.93®) 1.1955)

03

64000 —2.899(2) —5.796(6) 0.938)  1.212) 02|
128000 —2.900(2) —5.807(2) 0.93)  1.1913)
Exact ~ —2.9037  —5.8074 0.9294  1.1935 1
00 1 2 3 4 5

07

by 7, is not the same as the usual diffusion time step, which
governs the time evolution of the walkers, for us,
Results obtained for;=0.001, 7,=0.1, andu=0.1 and
with o= B8=0.2 for the importance sampling parameters are
shown in Table VII. The exact results are taken from a pre-
cise variational calculatiof23]. We can see that the BQMC
results are quite good especially for the largest population. Ing
this case we also calculated other expectation valdds,,), B
(r1p), and(r2,). We have obtained, respectively, 0.9418,
1.4241), and2.521(5) to be compared to the exact ones .
0.9458, 1.422, and 2.516. All these results, except the biase
result for{1/r ;,), seem to indicate that a higher value fer 01
does not generate any additional bias. In addition, the ratio of
standard deviation to the average value of the weights is o
drastically improved with the larger value. rau)
We also studied the behavior of different electron densi-
ties for the helium atom. The results obtained for the
128 000-walker calculation of the charge densityr), are
compared to precise values frd283] in the top panel of Fig.
4. We note differences between both densities around the = ) _
maximum that may indicate that this quantity is sensitive to@PPlied it successfully to the harmonic oscillator and the hy-
the deviations of the time-dependent Green’s function of th&rogen and helium atoms.
pair from its short-time limit. The sensitivity disappeared

0.6

0.3

FIG. 4. Comparison of the chargep) and intracule(bottom
densities obtained with the BQM@@ashes linesto the exact ones
(solid lines.

when we calculated the electron density as a function of the ACKNOWLEDGMENTS
separation between the two electrons, the so-called intracule .
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sample the square of the wave function and to calculate
small energies differences efficiently for some simple sys- APPENDIX
tems. We have been able to control the fluctuations in the
normalization or branching by an appropriate choice of the
function that correlates the members of the pairs. We have
adapted the use of short-time Green'’s functions to the bilin-
ear case with a simple and transparent implementation and

The nth moment of the branching factor is defined as

Mn:f dUN"(U)W(U). (A1)
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If we use the expression fdi (32) and take into account that

v (0)= = L @219 Gyyi.0,m), (A2)
=—exp — =(u%+v u,v,7,),
\/; 2 1,1 2
we can write
- - a . . Y-
N“(U)\If(U)ocexp(—g(u—uo)z—gvz), (A3)
with
“ltag=1t "L (a4
AT a2, + ) tanhr,’ (Ad)
B n n—1 AS
’Bn_sink(27-1+7-2) sinhr,’ (A5)
Go=215, (A6)
o
y=a—Bn. (A7)

Since a,> B, , it is clear that the only condition that must
hold for M,, to be finite is thate be positive. This easily
leads to

ntanhr,

n—1—tanhr,’ (A8)

tanH2T1+ 7'2)<

PHYSICAL REVIEW E67, 026708 (2003

the first condition mentioned in the text. Since tagk(l,
this condition is simple ifr, is large; that is, if

7,>3Inn, (A9)

the condition is satisfied for every.

Equation(A8) is not easy to interpret analytically in the
short-time limit. We can obtain an useful form by neglecting
the tanhr, in its denominator:

tanH 27+ 75) n
< .
tanhr, n—-1

(A10)

This is a more restrictive condition; as a matter of fact, this
condition keeps the integral

f dig LG (0,v,271+ 75)
U

_1 - =
2'1 (u,v,7y)

finite without considering the effect of the ground-state wave
functions as in Eq(Al). In the short-time limit, Eq(A10)
becomes

7'222([’]_1)7'1,

which is the second equation mentioned in the text.
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